Yıl 2017, Cilt 22, Sayı 3, Sayfalar 115 - 126 2017-12-27

MİKROMEKANİK OLARAK TASARLANMIŞ ÇİMENTO ESASLI KOMPOZİTİN (ECC) KENDİLİĞİNDEN İYİLEŞMESİ
Self-Healing of Engineered Cementitious Composite Based on Micromechanics

Ceren KINA [1] , Kâzım TÜRK [2]

41 27

Tüm dünyada, çimento esaslı kompozitler çok yaygın bir şekilde kullanılan yapı malzemeleri haline gelmiştir. Bununla birlikte, bu malzemelerde yapının servis ömrünün başlangıcından itibaren bozulma kaçınılmazdır. Daha sonra, çoğunlukla işçilik ve harcama yoğunluğu olan bakım ve onarım işleri söz konusu olmaktadır. Bu sebeple, çevresel etkilerle bozulan çimento esaslı kompozitlerin kendiliğinden iyileşmesi büyük bir öneme sahiptir. Çimento esaslı kompozitlerde kendiliğinden iyileşme olayı, uzun zamandır birçok araştırmacı tarafından dikkate alınmakta ve incelenmektedir. Özellikle, ECC’de lokal olarak sürekli genişleyen bir çatlak yerine betonda birbirini izleyen çoklu çatlak oluşumu, kendiliğinden iyileşmeyi bu alanda daha cazip bir yöntem haline getirmektedir.
Cementitious composites have become very widely used in building materials in all over the world. However, deterioration is inevitable since the initiation of the service life of structure. Then, labor and expenditure based maintenance and repair works become necessary. Therefore, self-healing of the cementitious composites deteriorated due to environmental effects has great importance. The self-healing behavior of cementitious composites have been considered and examined by many researchers for a long time. Especially, self-healing was be more attractive method for ECC due to its sequential development of multiple cracks instead of continuous widening of one localized crack in concrete. 
  • Alyousif, M., Lachemi, M., Yildirim, G. ve Şahmaran, M. (2015) Effect of self-healing on the different transport properties of cementitious composites. Journal of Advanced Concrete Technology, 13, 112-123. doi:10.3151/jact.13.112
  • Clear, C. A. (1985) The effects of autogenous healing upon the leakage of water through cracks in concrete. Wexham Springs, Cement and Concrete Association, 28.
  • Edvardsen, C. (1999) Water permeability and autogenous healing of cracks in concrete. ACI Material Journal, 96, 448–55. doi: 10.14359/645
  • Homma, D., Mihashi, H. ve Nishiwaki, T. (2009) Self-healing capability of fibre reinforced cementitious composites. Journal of Advanced Concrete Technology, 7(2), 217–228. https://doi.org/10.3151/jact.7.217
  • Jacobsen, S., Marchand, J. ve Homain, H. (1995) SEM observations of the microstructure of frost deteriorated and self-healed concrete. Journal of Cement and Concrete Research, 25, 1781–90. https://doi.org/10.1016/0008-8846(95)00174-3
  • Kan, L. ve Shi, H. (2012) Investigation of self-healing behavior of Engineered Cementitious Composites (ECC) materials. Construction and Building Materials, 29, 348–356. doi:10.1016/j.conbuildmat.2011.10.051
  • Kanda, T. (1998) Design of Engineered Cementitious Composites for Ductile Seismic Resistant Elements, Ph.D. Thesis, Department of Civil and Environmental Engineering, Ann Arbor, University of Michigan.
  • Kim, P.J. (1999) Micromechanics Based Durability Study of Lightweight Thin Sheet Fiber Reinforced Cement Composites, Ph.D. Thesis, Department of Civil and Environmental Engineering, Ann Arbor, University of Michigan.
  • Li, M., Sahmaran, M. ve Li, V.C. (2007) Effect of cracking and healing on durability of engineered cementitious composites under marine environment, Proceedings of HPFRCC5-High Performance Fiber Reinforced Cement Composites, Stuttgart, Germany, July 10-13, 313–322.
  • Li, V.C. (1993) From micromechanics to structural engineering – the design of cementitious composites for civil engineering applications. JSCE Journal of Structural Mechanical Earthquake Engineering, 10(2), 37–48. https://doi.org/10.2208/jscej.1993.471_1
  • Li, V.C. (1998) Engineered cementitious composites (ECC) – tailored composites through micromechanical modeling, in: Banthia N, Bentur A, Mufti A, editors. Fiber reinforced concrete: present and the future. Montreal: Canadian Society for Civil Engineering, 64–97.
  • Li, V.C. (2003) On engineered cementitious composites (ECC) – a review of the material and its application. Journal of Advanced Concrete Technology, 1(3), 215–30. https://doi.org/10.3151/jact.1.215
  • Li, V.C., Leung, C.K.Y. (1992) Steady State and Multiple Cracking of Short Random Fiber Composites. ASCE Journal of Engineering Mechanics, 118(11), 2246-2264. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2246)
  • Li, V.C., Wang, S. Ve Wu, C. (2001) Tensile strain-hardening behaviour of polyvinyl alcohol engineered cementitious composite. ACI Material Journal, 98(6), 483–92. doi: 10.14359/10851
  • Lin, Z., Kanda, T. ve Li, V.C. (1999) On Interface Property Characterization and Performance of Fiber-Reinforced Cementitious Composites. Journal of Concrete Science and Engineering, 1(3), 173-184.
  • Ma, H., Qian, S. ve Zhang, Z. (2014) Effect of self-healing on water permeability and mechanical property of medium-early- strength cementitious composites. Construction and Building Materials, 68, 92-101. http://dx.doi.org/10.1016/j.conbuildmat.2014.05.065
  • Marshall, D.B. ve Cox, B.N. (1988) A J-Integral Method for Calculating Steady-State Matrix Cracking Stresses in Composites. Mechanics of Materials, 7(2), 127-133. https://doi.org/10.1016/0167-6636(88)90011-7
  • Mihashi, H. ve De Leite, J.P.B. (2004) State-of-the-art report on control of cracking in early age concrete. Advanced Concrete Technology, 2(2), 141-154. https://doi.org/10.3151/jact.2.141
  • Qian, S.Z., Zhou, J. ve Schlangen, E. (2010) Influence of curing condition and precracking time on the self-healing behavior of Engineered Cementitious Composites. Cement and Concrete Composites, 32, 686–693. doi:10.1016/j.cemconcomp.2010.07.015
  • Reinhardt, H. ve Joos, M. (2003) Permeability and self-healing of cracked concrete as a function of temperature and crack width. Journal of Cement and Concrete Research, 33, 981–5. doi:10.1016/S0008-8846(02)01099-2
  • Sahmaran, M. ve Li, V.C. (2007) De-icing salt scaling resistance of mechanically loaded engineered cementitious composites. Cement and Concrete Research, 37(7), 1035–1046. doi:10.1016/j.cemconres.2007.04.001
  • Sahmaran, M. ve Li, V.C. (2008) Durability of mechanically loaded engineered cementitious composites under high alkaline environment. Cement and Concrete Composites, 30(2), 72–81. doi:10.1016/j.cemconcomp.2007.09.004
  • Sahmaran, M. ve Li, V.C. (2009) Influence of microcracking on water absorption and sorptivity of ECC. Journal of Materials and Structures (RILEM), 42(5), 593– 603. https://doi.org/10.1617/s11527-008-9406-6
  • Sahmaran, M. ve Yaman, I.O. (2008) Influence of transverse crack width on reinforcement corrosion initiation and propagation in mortar beams. Can Journal Civil Engineering, 35, 236–45. https://doi.org/10.1139/L07-117
  • Sahmaran, M., Li, M. ve Li, V.C. (2007) Transport properties of engineered cementitious composites under chloride exposure. ACI Materials Journal, 104(6), 604–611. doi: 10.14359/18964
  • Sahmaran, M., Li, V.C. ve Andrade, C. (2008) Corrosion resistance performance of steel-reinforced engineered cementitious composite beams. ACI Materials Journal, 105(3), 243–250. doi: 10.14359/19820
  • Sahmaran, M., Yildirim, G. ve Erdem, T.K. (2013) Self-healing capability of cementitious composites incorporating different supplementary cementitious materials. Cement Concrete Composites, 35, 89-101, 2013. http://dx.doi.org/10.1016/j.cemconcomp.2012.08.013
  • Schlangen, E. (2010) Fracture mechanics. CT5146 Lecture Notes. In: Hua X. Selfhealing of Engineered Cementitious Composites (ECC) in concrete repair system, Master thesis, Delft University of Technology.
  • Standard Test Method for Electrical Indication of Chloride’s Ability to Resist Chloride (ASTM C1202-94), 1994, Annual Book of ASTM Standards V 04.02, ASTM, Philadelphia, 620-5.
  • Wang, K. (2005) Micromechanics based matrix design for engineered cementitious composites, PhD dissertation, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor.
  • Wang, K., Jansen, D., Shah, S. ve Karr, A. (1997) Permeability study of cracked concrete. Cement and Concrete Research, 27(3), 381–93, 1997. https://doi.org/10.1016/S0008-8846(97)00031-8
  • Weimann, M.B. ve Li, V.C. (2003) Hygral behavior of engineered cementitious composites (ECC). International Journal of for Restoration of Buildings and Monuments, 9(5), 513-534. https://doi.org/10.1515/rbm-2003-5791
  • Wittmann, F.H. (1998) Seperation of assignments: A new approach towards more durable reinforced concrete structures. Proceeding of the Fifth Workshop on Material Properties and Design, Durable Reinforced Concrete Structures, Aedification Publishers, 151-160.
  • Wittmann, F.H. (2002) Crack formation and fracture energy of normal and high strength concrete. Sadhana, 27(4), 413-423. https://doi.org/10.1007/BF02706991
  • Wu, C. (2001) Micromechanical Tailoring of PVA-ECC for Structural Applications, Ph.D. Thesis, Departmental of Civil and Environmental Engineering, Ann Arbor, University of Michigan.
  • Wu, M., Johannesson, B. ve Geiker, M. (2012) A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Construction and Building Materials, 28, 571–583. doi:10.1016/j.conbuildmat.2011.08.086
  • Yang, E., Wang, S., Yang, Y. ve Li, V.C. (2006) Fiber Bridging Constitutive Law of Engineered Cementitious Composites. Journal of Advanced Concrete Technology, 6(1), 181-193. https://doi.org/10.3151/jact.6.181
  • Yang, Y., Yang, E. ve Li, V.C. (2011) Autogenous healing of engineered cementitious composites at early age. Cement and Concrete Research, 41, 176–183. doi:10.1016/j.cemconres.2010.11.002
  • Zhang, Z., Qian, S. ve Ma, H. (2014) Investigating mechanical properties and self-healing behavior of micro-cracked ECC with different volume of fly ash. Construction and Building Materials,52,17-23.https://doi.org/10.1016/j.conbuildmat.2013.11.001
Konular Mühendislik ve Temel Bilimler
Dergi Bölümü Derleme Makaleler
Yazarlar

Yazar: Ceren KINA
E-posta: crnkna@gmail.com

Yazar: Kâzım TÜRK (Sorumlu Yazar)
E-posta: kturk23@hotmail.com

Bibtex @derleme { uumfd371874, journal = {Uludağ University Journal of The Faculty of Engineering}, issn = {2148-4147}, address = {Uludağ Üniversitesi}, year = {2017}, volume = {22}, pages = {115 - 126}, doi = {10.17482/uumfd.371874}, title = {MİKROMEKANİK OLARAK TASARLANMIŞ ÇİMENTO ESASLI KOMPOZİTİN (ECC) KENDİLİĞİNDEN İYİLEŞMESİ}, key = {cite}, author = {TÜRK, Kâzım and KINA, Ceren} }
APA KINA, C , TÜRK, K . (2017). MİKROMEKANİK OLARAK TASARLANMIŞ ÇİMENTO ESASLI KOMPOZİTİN (ECC) KENDİLİĞİNDEN İYİLEŞMESİ. Uludağ University Journal of The Faculty of Engineering, 22 (3), 115-126. DOI: 10.17482/uumfd.371874
MLA KINA, C , TÜRK, K . "MİKROMEKANİK OLARAK TASARLANMIŞ ÇİMENTO ESASLI KOMPOZİTİN (ECC) KENDİLİĞİNDEN İYİLEŞMESİ". Uludağ University Journal of The Faculty of Engineering 22 (2017): 115-126 <http://dergipark.gov.tr/uumfd/issue/31375/371874>
Chicago KINA, C , TÜRK, K . "MİKROMEKANİK OLARAK TASARLANMIŞ ÇİMENTO ESASLI KOMPOZİTİN (ECC) KENDİLİĞİNDEN İYİLEŞMESİ". Uludağ University Journal of The Faculty of Engineering 22 (2017): 115-126
RIS TY - JOUR T1 - MİKROMEKANİK OLARAK TASARLANMIŞ ÇİMENTO ESASLI KOMPOZİTİN (ECC) KENDİLİĞİNDEN İYİLEŞMESİ AU - Ceren KINA , Kâzım TÜRK Y1 - 2017 PY - 2017 N1 - doi: 10.17482/uumfd.371874 DO - 10.17482/uumfd.371874 T2 - Uludağ University Journal of The Faculty of Engineering JF - Journal JO - JOR SP - 115 EP - 126 VL - 22 IS - 3 SN - 2148-4147-2148-4155 M3 - doi: 10.17482/uumfd.371874 UR - http://dx.doi.org/10.17482/uumfd.371874 Y2 - 2017 ER -
EndNote %0 Uludağ University Journal of The Faculty of Engineering MİKROMEKANİK OLARAK TASARLANMIŞ ÇİMENTO ESASLI KOMPOZİTİN (ECC) KENDİLİĞİNDEN İYİLEŞMESİ %A Ceren KINA , Kâzım TÜRK %T MİKROMEKANİK OLARAK TASARLANMIŞ ÇİMENTO ESASLI KOMPOZİTİN (ECC) KENDİLİĞİNDEN İYİLEŞMESİ %D 2017 %J Uludağ University Journal of The Faculty of Engineering %P 2148-4147-2148-4155 %V 22 %N 3 %R doi: 10.17482/uumfd.371874 %U 10.17482/uumfd.371874