Yıl 2018, Cilt 23, Sayı 1, Sayfalar 235 - 246 2018-04-24

Scaling Analysis and Self-Similarity of One-Dimensional Transport Process
BİR BOYUTLU TAŞINIM SÜREÇLERİNDE ÖLÇEKLEME ANALİZİ VE KENDİNE BENZEŞİM

Ali ERCAN [1]

51 61

Convection-diffusion equation has been widely used to model a variety of flow and transport processes in earth sciences, including spread of pollutants in rivers, dispersion of dissolved material in estuaries and coastal waters, flow and transport in porous media, and transport of pollutants in the atmosphere. In this study, the conditions under which one-dimensional convection-diffusion equation becomes self-similar are investigated by utilizing one-parameter Lie group of point scaling transformations. By the numerical simulations, it is shown that the one-dimensional point source transport process in an original domain can be self-similar with that of a scaled domain. In fact, by changing the scaling parameter or the scaling exponents of the length dimension, one can obtain several different down-scaled or up-scaled self-similar domains. The derived scaling relations obtained by the Lie group scaling approach may provide additional understanding of transport phenomena at different space and time scales and may provide additional flexibility in setting up physical models in which one dimensional transport is significant.

Konveksiyon-difüzyon denklemi nehirlerdeki kirleticilerin yayılması, çözülmüş maddenin haliç ve sahil sularına dağılımı, gözenekli ortamda akış ve taşınım, ve atmosferdeki kirleticilerin taşınması gibi yer bilimlerindeki çeşitli akım ve taşınım süreçlerini modellemek için yaygın bir şekilde kullanılmaktadır. Bu çalışmada tek boyutlu konveksiyon-difüzyon denkleminin kendine benzeşim koşulları tek parametreli Lie grubu nokta ölçeklendirme dönüşümleri kullanılarak araştırılmıştır. Sayısal simülasyonlarla, tek boyutlu noktasal kaynaklı taşıma sürecinin ölçeklendirilmiş bir mekanla özdeşleşebileceği gösterilmiştir. Ölçeklendirme parametresi veya uzunluk boyutunun ölçekleme katsayısı değiştirilerek daha büyük veya daha küçük mekansal boyutlarda taşınım sürecinin gerçekleştiği simetrik problemler elde edebilir. Lie grubu ölçeklendirme yaklaşımı ile elde edilen ölçeklendirme ilişkileri, farklı mekan ve zaman ölçeklerindeki taşınım süreçlerini anlamamızı kolaylaştırabilir ve bir boyutlu taşınımın önemli olduğu süreçlerinde fiziksel modellerin oluşturulmasında ilave esneklik sağlayabilir.

  • Bear, J. (1976) Hydraulics of Groundwater, Mc Graw Hill, New York.
  • Bird, R.B., Stewart, W.E., Lightfoot, E.N. (2007) Transport Phenomena, J. Wiley, New York.
  • Bluman, G.W., Anco, S.C. (2002) Symmetry and integration methods for differential equations, Applied mathematical sciences, Springer, New York.
  • Bluman, C.E., Cole, J.D. (1974) Similarity methods for differential equations, Springer-Verlag, New York.
  • Bolster, D.T., Tartakovsky, D.M., Dentz, M. (2007) Analytical models of contaminant transport in coastal aquifers, Advances in Water Resources, 30(9), 1962-1972. doi:10.1016/j.advwatres.2007.03.007
  • Buckingham, E. (1914) On physically similar systems – Illustrations of the use of dimensional equations, Physical Review, 4, 345–376. doi:10.1103/PhysRev.4.345
  • Carr, K., Ercan, A., Kavvas, M.L. (2015) Scaling and Self-Similarity of One-dimensional Unsteady Suspended Sediment Transport with Emphasis on Unscaled Sediment Material Properties, Journal of Hydraulic Engineering, 141(5), 04015003. doi: 10.1061/(ASCE)HY.1943-7900.0000994.
  • Chatwin, P.C., Allen, C.M. (1985) Mathematical models of dispersion in rivers and estuaries, Annual Review of Fluid Mechanics, 17(1), 119-49. doi:10.1146/annurev.fl.17.010185.001003
  • Ercan, A., Kavvas, M.L., Haltas, I. (2014) Scaling and Self-similarity In One-Dimensional Unsteady Open Channel Flow, Hydrological Processes, 28(5), 2721-2737. doi:10.1002/hyp.9822
  • Ercan, A., and Kavvas, M.L. (2015a) Scaling and Self-similarity in Two-Dimensional Hydrodynamics, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(7), 075404. doi:10.1063/1.4913852
  • Ercan, A., Kavvas, M.L. (2015b) Self-similarity in Navier-Stokes Equations, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(12), 123126. doi:10.1063/1.4938762
  • Ermak, D.L. (1977) An analytical model for air pollutant transport and deposition from a point source, Atmospheric Environment, 11(3), 231-237. doi:10.1016/0004-6981(77)90140-8
  • Fattah, Q.N., Hoopes, J.A. (1985) Dispersion in anisotropic, homogeneous, porous media, Journal of Hydraulic Engineering, 111(5), 810-27. doi:10.1061/(ASCE)0733-9429
  • Fischer, H.B. (1966) A Note on the One-Dimensional Dispersion Model, International Journal of Air and Water Pollution, 10, 443-452.
  • Guvanasen, V., Volker, R.E. (1983) Numerical solutions for solute transport in unconfined aquifers, International Journal for Numerical Methods in Fluids, 3(2), 103-123. doi:10.1002/fld.1650030203
  • Haltas, I., Kavvas, M.L. (2011) Scale invariance and self-similarity in hydrologic processes in space and time, Journal of Hydrologic Engineering, 16(1), 51–63. doi:10.1061/ASCEHE.1943-5584.0000289
  • Hansen, A.G. (1964) Similarity analysis of boundary value problems in engineering, Prentice Hall Inc, New Jersey.
  • Heller, V. (2011) Scale effects in physical hydraulic engineering models, Journal of Hydraulic Research, 49(3), 293-306. doi:10.1080/00221686.2011.578914
  • Holzbecher, E. (2007) Environmental Modeling Using MATLAB, Springer-Verlag, Berlin, Germany.
  • Ibragimov, N.H. (1994) Handbook of Lie group analysis of differential equations, Volume I, Symmetries, Exact Solutions, and Conservation Laws, CRC Press, Boca Roton, U.S.A.
  • Ibragimov, N.H. (1995) Handbook of Lie group analysis of differential equations. Volume II, Applications in Engineering and Physical Sciences, CRC Press, Boca Roton, USA.
  • James, I.D. (2002) Modelling pollution dispersion, the ecosystem and water quality in coastal waters: a review, Environmental Modelling & Software, 17(4), 363-385.
  • Kumar, N. (1983) Unsteady flow against dispersion in finite porous media, Journal of Hydrology, 63(3-4), 345-358. doi:10.1016/0022-1694(83)90050-1
  • Maloszewski, P., Benischke, R., Harum, T., Zojer, H. (1994) Estimation of solute transport parameters in heterogen groundwater system of a karstic aquifer using artificial tracer experiments. In : Water Down Under 94, Groundwater Papers, Preprints of Papers. Barton, ACT, Institution of Engineers, Australia, 105-111.
  • Martins, R. (1989) Recent Advances in Hydraulic Physical Modelling, NATO ASI Series E, Applied Sciences, Vol.165, Kluwer Academic Publishers, Dordrecht, the Netherlands.
  • Parlarge, J.Y. (1980) Water transport in soils, Ann. Rev. Fluids Mech, 2, 77–102. doi:10.1146/annurev.fl.12.010180.000453
  • Polsinelli, J., Kavvas, M. L. (2016) A comparison of the modern Lie scaling method to classical scaling techniques, Hydrology and Earth System Sciences, 20, 2669-2678. doi:10.5194/hess-20-2669-2016
  • Polyanin, A.D., Manzhirov, A.V. (2006) Handbook of Mathematics for Engineers and Scientists, 1st edn., Chapman & Hall/CRC, FL, USA.
  • Rayleigh, J.W.S. (1892) On the question of the stability of the flow of liquids, Philosophical magazine, 34, 59-70.
  • Salmon, J.R., Liggett, J.A., Gallagher, R.H. (1980) Dispersion analysis in homogeneous lakes, International Journal for Numerical Methods in Engineering, 15(11), 1627-42. doi:10.1002/nme.1620151106
  • Sedov, L.I. (1959) Similarity and Dimensional Methods in Mechanics, Academic Press, New York, U.S.
  • Sukhodolov, A.N., Nikora, V.I., Rowinski, P.M., Czernuszenko, W. (1997) A case study of longitudinal dispersion in small lowland rivers, Water Environment Res., 69(7), 1246–1253.
  • Wang, H., Persaud, N. (2004) Miscible displacement of initial distributions in laboratory columns, J. Soil Sci. Soc. of Am., 68(5), 1471–1478.
  • Yalin, M.S. (1971) Theory of hydraulic models, Macmillan Press, London, U.K.
  • Zlatev, Z. (2012) Computer Treatment of Large Air Pollution Models, Springer, Dardrecht, Netherlands.
Birincil Dil en
Konular Mühendislik ve Temel Bilimler
Dergi Bölümü Araştırma Makaleleri
Yazarlar

Orcid: 0000-0003-1052-4302
Yazar: Ali ERCAN
Kurum: University of California, Davis
Ülke: United States


Bibtex @araştırma makalesi { uumfd330886, journal = {Uludağ University Journal of The Faculty of Engineering}, issn = {2148-4147}, eissn = {2148-4155}, address = {Uludağ Üniversitesi}, year = {2018}, volume = {23}, pages = {235 - 246}, doi = {10.17482/uumfd.330886}, title = {Scaling Analysis and Self-Similarity of One-Dimensional Transport Process}, key = {cite}, author = {ERCAN, Ali} }
APA ERCAN, A . (2018). Scaling Analysis and Self-Similarity of One-Dimensional Transport Process. Uludağ University Journal of The Faculty of Engineering, 23 (1), 235-246. DOI: 10.17482/uumfd.330886
MLA ERCAN, A . "Scaling Analysis and Self-Similarity of One-Dimensional Transport Process". Uludağ University Journal of The Faculty of Engineering 23 (2018): 235-246 <http://dergipark.gov.tr/uumfd/issue/36268/330886>
Chicago ERCAN, A . "Scaling Analysis and Self-Similarity of One-Dimensional Transport Process". Uludağ University Journal of The Faculty of Engineering 23 (2018): 235-246
RIS TY - JOUR T1 - Scaling Analysis and Self-Similarity of One-Dimensional Transport Process AU - Ali ERCAN Y1 - 2018 PY - 2018 N1 - doi: 10.17482/uumfd.330886 DO - 10.17482/uumfd.330886 T2 - Uludağ University Journal of The Faculty of Engineering JF - Journal JO - JOR SP - 235 EP - 246 VL - 23 IS - 1 SN - 2148-4147-2148-4155 M3 - doi: 10.17482/uumfd.330886 UR - http://dx.doi.org/10.17482/uumfd.330886 Y2 - 2018 ER -
EndNote %0 Uludağ University Journal of The Faculty of Engineering Scaling Analysis and Self-Similarity of One-Dimensional Transport Process %A Ali ERCAN %T Scaling Analysis and Self-Similarity of One-Dimensional Transport Process %D 2018 %J Uludağ University Journal of The Faculty of Engineering %P 2148-4147-2148-4155 %V 23 %N 1 %R doi: 10.17482/uumfd.330886 %U 10.17482/uumfd.330886
ISNAD ERCAN, Ali . "BİR BOYUTLU TAŞINIM SÜREÇLERİNDE ÖLÇEKLEME ANALİZİ VE KENDİNE BENZEŞİM". Uludağ University Journal of The Faculty of Engineering 23 / 1 (Nisan 2018): 235-246. http://dx.doi.org/10.17482/uumfd.330886