Yıl 2018, Cilt 23, Sayı 2, Sayfalar 45 - 54 2018-08-31

TAKAGİ-SUGENO BULANIK COHEN-GROSSBERG TİPİ ZAMAN GECİKMELİ YAPAY SİNİR AĞLARINDA KARARLILIK ANALİZİ
Stability Analysis of A Class of Takagı-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Time Delays

Neyir ÖZCAN SEMERCİ [1] , Samet BARIŞ [2]

86 113

Bu çalışma çoklu zaman gecikmeli Takagi-Sugeno Bulanık Cohen-Grossberg tipi yapay sinir ağlarının global asimtotik kararlılık problemi ile ilgilenmektedir. Uygun bulanık Lyapunov fonksiyonelleri kullanılarak ve aktivasyon fonksiyonlarının Lipschitz olduğu dikkate alnarak, gecikmeli Takagi-Sugeno Bulanık Cohen-Grossberg yapay sinir ağlarında denge noktasının global asimtotik gecikme parametrelerinden bağımsız olarak, yeni yeterli bir kararlılık koşulu sunulmuştur. Elde edilen koşul sadece sinir ağının sistem parametrelerine bağlı olarak ifade edilmiştir. Bu nedenle, bu çalışmada çalışılan  yapay sinir ağı modelinin denge ve kararlılık özellikleri, bazı özel matris sınıflarının  temel özellikleri kullanarak kolaylıkla doğrulanabilir.

This paper deals with the problem of the global asymptotic stability of the class of Takagi-Sugeno Fuzzy Cohen-Grossberg neural networks with multiple time delays. By constructing a suitable fuzzy Lyapunov functional, we present a new delay-independent sufficient condition for the global asymptotic stability of the equilibrium point for delayed Takagi-Sugeno Fuzzy Cohen-Grossberg neural networks with respect to the Lipschitz activation functions. The obtained condition simply relies on the network parameters of the neural system. Therefore, the equilibrium and stability properties of the neural network model considered in this paper can be easily verified by exploiting some basic properties of some certain classes of matrices.

  • Ahn, C. K. (2011) Takagi-Sugeno fuzzy Hopfield neural networks for H-infinity nonlinear system identification, Neural Processing Letters, 34(1), 59-70. doi: 10.1007/s11063-011-9183-z
  • Arik, S. and Orman, Z. (2005) Global stability analysis of Cohen-Grossberg neural networks with time varying delays, Physics Letters A, 341(5-6), 410-421. doi:10.1016/j.physleta.2005.04.095
  • Balasubramaniam, P. and Ali, M. S. (2011) Stability analysis of Takagi-Sugeno fuzzy Cohen-Grossberg BAM neural networks with discrete and distributed time-varying delays, Mathematical and Computer Modelling, 53(1-2), 151-160. doi:10.1016/j.mcm.2010.07.028
  • Bao, G., Wen, S. and Zeng, Z. (2012) Robust stability analysis of interval fuzzy Cohen-Grossberg neural networks with piecewise constant argument of generalized type, Neural Networks, 33, 32-41. doi:10.1016/j.neunet.2012.04.003
  • Bao, H. (2016) Existence and exponential stability of periodic solution for BAM fuzzy Cohen-Grossberg neural networks with mixed delays, Neural Processing Letters, 43(3), 871-885. doi: 10.1007/s11063-015-9455-0
  • Chandran, R. and Balasubramaniam, P. (2013) Delay dependent exponential stability for fuzzy recurrent neural networks with interval time-varying delay, Neural Processing Letters, 37(2), 147-161. doi: 10.1007/s11063-012-9239-8
  • Cohen, M.A. and Grossberg, S. (1983) Absolute stability and global pattern formation and parallel memory storage by competitive neural networks, IEEE Transactions on Systems, Man and Cybernetics, 13(5), 815-821.
  • Gan, Q., Xu, R. and Yang, P. (2010) Stability analysis of stochastic fuzzy cellular neural networks with time-varying delays and reaction-diffusion terms, Neural Processing Letters, 32(1), 45-57. doi: 10.1007/s11063-010-9144-y
  • Gan, Q. (2013) Exponential synchronization of stochastic fuzzy cellular neural networks with reaction-diffusion terms via periodically intermittent control, Neural Processing Letters, 37(3), 393-410. doi: 10.1007/s11063-012-9254-9
  • He, D. and Xu, D. (2008) Attracting and invariant sets of fuzzy Cohen-Grossberg neural networks with time-varying delays, Physics Letters A, 372(47), 7057-7062. doi:10.1016/j.physleta.2008.10.035
  • Hou, Y.Y, Liao, T.L. and Yan, J.J. (2007) Stability analysis of Takagi-Sugeno fuzzy cellular neural networks with time-varying delays, IEEE Transactions on Systems, Man and Cybernetics, 37(3), 720-726. doi: 10.1109/TSMCB.2006.889628
  • Huang, H., Ho, D.W.C. and Lam, J. (2005) Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays, IEEE Transactions on Circuits Systems-I, Fundamental Theory and Applications, 52(5), 251-255. doi: 10.1109/TCSII.2005.846305
  • Jian, J. and Jiang, W. (2017) Lagrange exponential stability for fuzzy Cohen-Grossberg neural networks with time-varying delays, Fuzzy Sets and Systems, 277, 65-80. doi: 10.1016/j.fss.2014.12.006
  • Li, C., Li, Y. and Ye, Y. (2010) Exponential stability of fuzzy Cohen-Grossberg neural networks with time delays and impulsive effects, Communications in Nonlinear Science and Numerical Simulation, 15(11), 3599-3606. doi:10.1016/j.cnsns.2010.01.001
  • Mathiyalagan, K., Park, J. H., Sakthivel, R. and Anthoni, S. M. (2014) Delay fractioning approach to robust exponential stability of fuzzy Cohen-Grossberg neural networks, Applied Mathematics and Computation, 230, 451-463. doi: 10.1016/j.amc.2013.12.063
  • Nie, X., Zheng, W. X. and Cao, J. (2015) Multistability of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays, Neural Networks, 71, 27-36. doi: 10.1016/j.neunet.2015.07.009
  • Senan, S. (2018) An analysis of global stability of Takagi-Sugeno fuzzy Cohen-Grossberg neural networks with time delays, Neural Processing Letters, https://doi.org/10.1007/s11063-018-9792-x.
  • Takagi, T. and Sugeno, M. (1985) Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man and Cybernetics, 15(1), 116-132.
  • Tseng, K.H, Tsai, J. S. and Lu, C. Y. (2012) Design of delay-dependent exponential estimator for T-S Fuzzy Neural networks with mixed time-varying interval delays using hybrid Taguchi-Genetic algorithm, Neural Processing Letters, 36(1), 49-67. doi: 10.1007/s11063-012-9222-4
  • Xie, W. and Zhu, Q. (2015) Mean square exponential stability of stochastic fuzzy delayed Cohen–Grossberg neural networks with expectations in the coefficients, Neurocomputing, 166, 133-139. doi: 10.1016/j.neucom.2015.04.020
  • Yamamoto, H. and Furuhashi, T. (2001) A new sufficient condition for stable fuzzy control system and its design method, IEEE Transactions on Fuzzy Systems, 9(4), 554-569.
  • Yang, W. (2014) Periodic solution for fuzzy Cohen-Grossberg BAM neural networks with both time-varying and distributed delays and variable coefficients, Neural Processing Letters, 40(1), 51-73. doi: 10.1007/s11063-013-9310-0
  • Zheng, C.D., Shan, Q. H., Zhang, H. and Wang, Z. (2013) On stabilization of stochastic Cohen-Grossberg neural networks with mode-dependent mixed time-delays and Markovian switching, IEEE Transactions on Neural Networks and Learning Systems, 24(5), 800-811. doi: 10.1109/TNNLS.2013.2244613
  • Zheng, C. D., Zhang, X. and Wang, Z. (2016) Mode and delay-dependent stochastic stability conditions of fuzzy neural networks with Markovian jump parameters, Neural Processing Letters, 43(1), 195-217. doi: 10.1007/s11063-015-9413-x
Birincil Dil en
Konular Mühendislik
Dergi Bölümü Araştırma Makaleleri
Yazarlar

Yazar: Neyir ÖZCAN SEMERCİ (Sorumlu Yazar)
Ülke: Turkey


Yazar: Samet BARIŞ
Ülke: Turkey


Bibtex @araştırma makalesi { uumfd406443, journal = {Uludağ University Journal of The Faculty of Engineering}, issn = {2148-4147}, eissn = {2148-4155}, address = {Uludağ Üniversitesi}, year = {2018}, volume = {23}, pages = {45 - 54}, doi = {10.17482/uumfd.406443}, title = {Stability Analysis of A Class of Takagı-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Time Delays}, key = {cite}, author = {BARIŞ, Samet and ÖZCAN SEMERCİ, Neyir} }
APA ÖZCAN SEMERCİ, N , BARIŞ, S . (2018). Stability Analysis of A Class of Takagı-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Time Delays. Uludağ University Journal of The Faculty of Engineering, 23 (2), 45-54. DOI: 10.17482/uumfd.406443
MLA ÖZCAN SEMERCİ, N , BARIŞ, S . "Stability Analysis of A Class of Takagı-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Time Delays". Uludağ University Journal of The Faculty of Engineering 23 (2018): 45-54 <http://dergipark.gov.tr/uumfd/issue/36936/406443>
Chicago ÖZCAN SEMERCİ, N , BARIŞ, S . "Stability Analysis of A Class of Takagı-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Time Delays". Uludağ University Journal of The Faculty of Engineering 23 (2018): 45-54
RIS TY - JOUR T1 - Stability Analysis of A Class of Takagı-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Time Delays AU - Neyir ÖZCAN SEMERCİ , Samet BARIŞ Y1 - 2018 PY - 2018 N1 - doi: 10.17482/uumfd.406443 DO - 10.17482/uumfd.406443 T2 - Uludağ University Journal of The Faculty of Engineering JF - Journal JO - JOR SP - 45 EP - 54 VL - 23 IS - 2 SN - 2148-4147-2148-4155 M3 - doi: 10.17482/uumfd.406443 UR - http://dx.doi.org/10.17482/uumfd.406443 Y2 - 2018 ER -
EndNote %0 Uludağ University Journal of The Faculty of Engineering Stability Analysis of A Class of Takagı-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Time Delays %A Neyir ÖZCAN SEMERCİ , Samet BARIŞ %T Stability Analysis of A Class of Takagı-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Time Delays %D 2018 %J Uludağ University Journal of The Faculty of Engineering %P 2148-4147-2148-4155 %V 23 %N 2 %R doi: 10.17482/uumfd.406443 %U 10.17482/uumfd.406443
ISNAD ÖZCAN SEMERCİ, Neyir , BARIŞ, Samet . "TAKAGİ-SUGENO BULANIK COHEN-GROSSBERG TİPİ ZAMAN GECİKMELİ YAPAY SİNİR AĞLARINDA KARARLILIK ANALİZİ". Uludağ University Journal of The Faculty of Engineering 23 / 2 (Ağustos 2018): 45-54. http://dx.doi.org/10.17482/uumfd.406443