Yıl 2017, Cilt 3, Sayı 2, Sayfalar 114 - 129 2017-12-20

GÖRÜNTÜ İŞLEME TABANLI İHA VE UYDU SİSTEMLERİ HİBRİT YAPAY ZEKÂ MODELİYLE KAÇAK YAPILARIN TESPİTİ

Batuhan AY [1] , Ersin NAMLI [2]

118 371

Günümüzde imara kapalı olan bölgelerde yasak olmasına rağmen yetkili personel ve denetim eksikliğinden dolayı kaçak konut inşasının mümkün ve yaygın olduğu görülmektedir. Bu durumun tespit edilmesi ve yetkili kişilere iletilmesi oldukça zordur ve yüksek maliyetlidir, buna ek olarak bir o kadar da süre kaybına yol açmaktadır.

Bu çalışmada görüntü işleme, veri madenciliği, makine öğrenme ve yapay zeka teknikleri ile analiz edilmek üzere uydu görüntülerinde imara kapalı bölgelerden belirli alanlar alınıp tanımlandırılarak kendi aralarında sınıflandırılmıştır.

Yapılan çalışmada amaçlanan, fotoğrafları görüntü tarama ve yapay zeka algoritmalarıyla analiz ederek kaçak bölgelere inşa edilmiş konutları tespit edilmesi ve bu şekilde tespit edilen bölgeyi, konumu ve zamanı sorumlu kişilere aktararak kaçak yapılaşmanın önüne geçebilmektir. Ayrıca yapılan sınıflandırma sayesinde boş araziler, ekili araziler, orman alanları da tespit edilebilmektedir. Tespit edilen bu araziler ise daha verimli kullanılabilmek adına ilgili kişiler tarafından değerlendirilmesi için tespit edilen konumları hakkında bilgi verilebilir.   Yapılan bu çalışma sonucunda doğru sınıflandırma oranı oldukça yüksek çıkmış ve kaçak konutların tespiti adına başarılı bir sonuç elde edilmiştir

Görüntü İşleme, Yapay Zeka, Veri Madenciliği, Makine Öğrenme
  • 1. Chapelle, O., & Vapnik, V. (2000). Model selection for support vector machines. In Advances in neural information processing systems (pp. 230-236).
  • 2. Chatzichristofis, S. A., & Boutalis, Y. S. (2008, May). Fcth: Fuzzy color and texture histogram-a low level feature for accurate image retrieval. In Image Analysis for Multimedia Interactive Services, 2008. WIAMIS'08. Ninth International Workshop on (pp. 191-196). IEEE.
  • 3. Chien, C.F.,Chen, L.F., “Data Mining to Improve Personnel Selection and Enhance Human Capital: A Case Study in High-Technology Industry”, Expert Systems with Applications, 34(1): 280-290 (2008).
  • 4. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
  • 5. DİLLY, R., 1995, Data Mining, An İntroduction Student Notes.
  • 6. Ertunç, H.M., Hoşöz, M., “Comparative analysis of an evaporative condenser using artificial neural network and adaptive neuro-fuzzy inference system”, International Journal of Refrigeration, 31(8): 1426-1436 (2008).
  • 7. FAYYAD, U., M., WİERSE, A., & GRİNSTEİN, G. G., 2002, Information visualization in data mining and knowledge discovery, Morgan Kaufmann, USA, 1-55860-689-0.
  • 8. FERNANDEZ, G., 2010, Statistical data mining using SAS applications, CRC Press.
  • 9. Foody, G. M., & Mathur, A. (2004). A relative evaluation of multiclass image classification by support vector machines. IEEE Transactions on geoscience and remote sensing, 42(6), 1335-1343
  • 10. Gabor, D. (1946). Theory of communication. Part 1: The analysis of information. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 93(26), 429-441.
  • 11. http://blog.udentify.co/04/2017/goruntu-isleme-nedir/
  • 12. https://sehirharitasi.ibb.gov.tr/
  • 13. Kavzoglu, T., & Colkesen, I. (2009). A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 11(5), 352-359.
  • 14. KAYNAR, O., TAŞTAN, S., & DEMİRKOPARAN, F., 2011, Yapay Sinir Ağları İle Doğalgaz Tüketim Tahmini, Atatürk Üniversitesi İktisadi Ve İdari Bilimler Dergisi, 25.
  • 15. Koca, H.K., “Kontrast tutucu maddeli meme MR'ı örneğinde yapay sinir ağları ile görüntü segmentasyonu”, Yükek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007.
  • 16. Marĉelja, S. (1980). Mathematical description of the responses of simple cortical cells. JOSA, 70(11), 1297-1300.
  • 17. Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on geoscience and remote sensing, 42(8), 1778-1790
  • 18. Mitra, S., & Pal, S. K. (2005). Fuzzy sets in pattern recognition and machine intelligence. Fuzzy Sets and systems, 156(3), 381-386
  • 19. Shim, S. O., & Choi, T. S. (2002, June). Edge color histogram for image retrieval. In Image Processing. 2002. Proceedings. 2002 International Conference on (Vol. 3, pp. 957-960). IEEE.
  • 20. Super, B. J., & Bovik, A. C. (1991, November). Three-dimensional orientation from texture using Gabor wavelets. In Visual Communications,'91, Boston, MA (pp. 574-586). International Society for Optics and Photonics.
Konular Sosyal ve Beşeri Bilimler
Dergi Bölümü Makaleler
Yazarlar

Yazar: Batuhan AY

Yazar: Ersin NAMLI (Sorumlu Yazar)

Bibtex @araştırma makalesi { ybs368772, journal = {Yönetim Bilişim Sistemleri Dergisi}, issn = {}, eissn = {2630-550X}, address = {Prof. Dr. Vahap Tecim}, year = {2017}, volume = {3}, pages = {114 - 129}, doi = {}, title = {GÖRÜNTÜ İŞLEME TABANLI İHA VE UYDU SİSTEMLERİ HİBRİT YAPAY ZEKÂ MODELİYLE KAÇAK YAPILARIN TESPİTİ}, key = {cite}, author = {NAMLI, Ersin and AY, Batuhan} }
APA AY, B , NAMLI, E . (2017). GÖRÜNTÜ İŞLEME TABANLI İHA VE UYDU SİSTEMLERİ HİBRİT YAPAY ZEKÂ MODELİYLE KAÇAK YAPILARIN TESPİTİ. Yönetim Bilişim Sistemleri Dergisi, 3 (2), 114-129. Retrieved from http://dergipark.gov.tr/ybs/issue/33128/368772
MLA AY, B , NAMLI, E . "GÖRÜNTÜ İŞLEME TABANLI İHA VE UYDU SİSTEMLERİ HİBRİT YAPAY ZEKÂ MODELİYLE KAÇAK YAPILARIN TESPİTİ". Yönetim Bilişim Sistemleri Dergisi 3 (2017): 114-129 <http://dergipark.gov.tr/ybs/issue/33128/368772>
Chicago AY, B , NAMLI, E . "GÖRÜNTÜ İŞLEME TABANLI İHA VE UYDU SİSTEMLERİ HİBRİT YAPAY ZEKÂ MODELİYLE KAÇAK YAPILARIN TESPİTİ". Yönetim Bilişim Sistemleri Dergisi 3 (2017): 114-129
RIS TY - JOUR T1 - GÖRÜNTÜ İŞLEME TABANLI İHA VE UYDU SİSTEMLERİ HİBRİT YAPAY ZEKÂ MODELİYLE KAÇAK YAPILARIN TESPİTİ AU - Batuhan AY , Ersin NAMLI Y1 - 2017 PY - 2017 N1 - DO - T2 - Yönetim Bilişim Sistemleri Dergisi JF - Journal JO - JOR SP - 114 EP - 129 VL - 3 IS - 2 SN - -2630-550X M3 - UR - Y2 - 2017 ER -
EndNote %0 Yönetim Bilişim Sistemleri Dergisi GÖRÜNTÜ İŞLEME TABANLI İHA VE UYDU SİSTEMLERİ HİBRİT YAPAY ZEKÂ MODELİYLE KAÇAK YAPILARIN TESPİTİ %A Batuhan AY , Ersin NAMLI %T GÖRÜNTÜ İŞLEME TABANLI İHA VE UYDU SİSTEMLERİ HİBRİT YAPAY ZEKÂ MODELİYLE KAÇAK YAPILARIN TESPİTİ %D 2017 %J Yönetim Bilişim Sistemleri Dergisi %P -2630-550X %V 3 %N 2 %R %U
ISNAD AY, Batuhan , NAMLI, Ersin . "GÖRÜNTÜ İŞLEME TABANLI İHA VE UYDU SİSTEMLERİ HİBRİT YAPAY ZEKÂ MODELİYLE KAÇAK YAPILARIN TESPİTİ". Yönetim Bilişim Sistemleri Dergisi 3 / 2 (Aralık 2017): 114-129.